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Nomenclature

bin(k-1;n,p) = _ pXq.-X, the cumulative binomial function.
x=O

C=the total of the cost of the subsystem itself plus the expected cost due to subsystem

failure

cl=loss due to failure of the subsystem

c3 = cost of a one module subsystem capable of full output

c4 =cost of a module in a k-out-of-n:G (good) subsystem when k is timed

g(k) =the function relating cost of the subsystem to the number of modules in subsystem

k = minimum number of good modules for the subsystem to be good

n = number of modules in the subsystem
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p =probability that a subsystem module is good

q=probability that a subsystem module fails or 1-p

r=reliability of the whole system for other than failure of the subsystem

INTRODUCTION

In designing a subsystem for a spacecraft, the design engineer is often faced with

a number of options. These options can range from planning an inexpensive subsystem

with low reliability to selecting a highly reliable system that would cost much more. How

does a design engineer choose between competing subsystems? More particularly, what

method can the engineer use to construct "models" that will take into consideration the

various choices offered?

For example, in designing a power subsystem for a spacecraft, the engineer may

choose between a power subsystem with .960 reliability and a more costly one with .995

reliability. When is the increased cost of a more reliable subsystem justified?

High reliability is not necessarily an end in itself but is desirable in order to

reduce the statistically expected cost due to a subsystem failure. However, this may not

be the wisest use of funds since this expected cost is not the only cost involved. The

engineer should consider not only the cost of the subsystem but also assess the costs that

would occur if the subsystem fails. We therefore minimize the total of the two costs, i.e.,

the total of the cost of the subsystem plus the expected cost due to subsystem failure,

and choose the subsystem with the lowest total..
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K OUT-OF-N:G SUBSYSTEMS

We will now direct our attention to a specific type of subsystem, called a k-out-of-

n:G subsystem. Such a subsystem has n modules, of which k are required to be good for

the subsystem to be good. As an example consider the situation where the engineer has

a certain power requirement for a spacecraft and may meet this requirement by having

one large power module(k=l), two smaller modules(k=2), etc. If k = 4 then each

module is 1/4 of the full required power. For example, an n = 6 and k = 4 subsystem

would have 6 modules, each of 1/4 power and thus would have the output capability of

1.5 times the required power. The engineer chooses n and k. Selection of the different

values of n and k results in different subsystems, each with different costs and reliabilit-

ies. Since each n and k yields different subsystems with different costs, we can choose

the subsystem ( n and k) which will minimize cost overall expected cost C.

The following two models illustrate the principles of the k-out-of-n:G subsystems

designs. For Model 1, the following assumptions are necessary:

1. The probability of failure of any module in the system is not affected by

the failure of any other module; i.e., the modules are independent.

2. Each of the modules has the same probability of success.

For Model 2 we have the assumptions noted, plus we are also free to choose k in our

subsystem.

MODEL 1

For model 1, we assume that k is fixed and that each module costs c4. Here the

engineer may choose only n. Now E{cost due to subsystem failure} = rc_Pr{subsystem
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failure} - rc 1 Pr{X<k}, where X, the number of good modules, has a binomial

distribution with parameters n and p.

subsystem failure}, then

C -- nc 4 + rc 1 bin(k-l; p,n)

Since C = cost of subsystem + E{cost due to

(1)

The authors have written a program CARRAC (Combined Analysis of Reliability,

Redundancy and Cost- beta version available) which enables the engineer to select the

best subsystems (i.e. ones with the lowest C's) and graph C as a function of either p or

c 1. Since these values are not often known precisely, this graph allows you to not only

select the best subsystem for a particular value of p or c 1 but also to view what happens

to C for nearby values of p or cl.

As an example, consider k = 1, that is only one module is required to be good for

the subsystem to be good. The reliability of this single module is estimated to be .95 (p

- .95). Let the reliability of the system for other than failure of the subsystem be .9 (r

= .9). The cost of one module is 1 (c 4 = 1) million dollars. The cost due to failure of

this subsystem is 10 (c_ = 10) million dollars. Figure l(from CARRAC) shows a plot of

C for .79 < p < .99 and n's of 1 through 4. When the reliability of a single module is p

= .95, then the n = 1 subsystem has the lowest value of C. Therefore the best sub-

system is the one with no spares.

insert figure 1

We can also see (fig. 1) that the n = 1 subsystem has the lowest value of C for any p >

.87. If p < .87, then n = 2 (one spare) has the lowest value of C. Suppose instead that

c 1 (cost due to failure of the subsystem) is 50. Figure 2 shows the plot of C for c1 = 50.



insert figure 2

We first note that if p -- .95, then the n = 2 subsystem (one spare) is the best. Com-

paring figs. 1 and 2 (at p --- .95) we see that the larger value of c 1 (in figure 2) requires a

larger value of n. In general, if the cost of subsystem failure increases, then more

redundancy is required. If .84 < p < .98, fig. 2 shows that the n = 2 subsystem is best.

If p < .84 then still more redundancy (n=3) is required. If p > .98, then no redundancy

(n= 1) is required.

MODEL 2

Here the engineer is free to choose both n and k. As an example of model 2,

suppose we are building a space electrical power subsystem. The engineer may build a

one module subsystem (k= 1) capable of full power, a two module subsystem (k--2)

capable of full power, where each module is capable of 1/2 power, etc. Let g(k)

represent the (generally) increased cost of building a subsystem consisting of k smaller

modules rather,than one large module. A rough rule of thumb says that the cost of

smaller modules for a space electrical power subsystem is proportional to the electrical

power raised to the .7, i.e.,

g(k) = k(1/k) "7 (2)

(other cost functions, g(k), are available in CARRAC). Suppose that the cost of

building a single module capable of full power is 1 (c 3 = 1). Then a subsystem

consisting of a single module capable of full power would cost c3g(1 ) = c31(1/1) '7= 1.0c 3,

a subsystem consisting of 2 modules, each of 1/2 power, would cost cag(2) = c32(1/2) "7=

1.23c 3 to build, etc. An n = 3 and k = 2 subsystem, i.e., one having 3 modules each of



1/2 power, would cost nc3g(k)/k -- 3xl.23c3/2 = 1.85c3to build.

Further supposethat the cost due to subsystemfailure, cl, is 240.

ity of the systemfor other than failure of the subsystembe .9 (r = .9).

the reliability of an individual module, is .96.For model 2,

C = ncag(k)/k + rexbin(k-l; p,n) (3)

Let the reliabil-

An estimate of p,

Figure 3 shows the best subsystemsover p ranging from .89 to .99. From fig. 3, at p =

.96, the n = 2, k = 1 subsystemis best (lowest value of C). If p < .95,the n = 4, k = 2

subsystemis best.This flatter curve over the range of p indicates a low value for C over

a wide range of p.

insert figure 3

CONCLUSIONS

When a designengineer needsto chooseamong competing subsystemswith

differing costsand reliabilities, CARRAC servesas a useful tool for the engineer in

selecting optimal k-out-of-n:G subsystems.Graphs enable the engineer to explore

competing near-optimal subsystemsover a range of reliabilities and costs, sinceoften

theseare not known precisely. CARRAC can be used to explore near optimal solutions

for other cost modelspresented by Suich & Patterson1'2. These models are more

complicated and cover time dependency,partial failures and situations with and without

salvagevalue.

In selectinga subsystem,many factors (other than costsand reliabilities we have

explored) enter into the final selection of a subsystem. However, the method of analysis

we have presentedis an important tool in making this final selection.
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